МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (ФГБОУ ВО «ВГУ»)

Программа вступительного экзамена в аспирантуру по направлению 06.06.01 Биологические науки

профили:

- 03.01.02 Биофизика
- 03.01.04 Биохимия
- 03.01.05 Физиология и биохимия растений
- 03.02.01 Ботаника
- 03.02.04 Зоология
- 03.02.05 Энтомология
- 03.02.07 Генетика
- 03.02.13 Почвоведение
- 03.02.08 Экология (биологические науки)

Программа вступительного экзамена в аспирантуру по направлению биологические науки разработана на основе ФГОС по направлению БИОЛОГИЯ и по специальности БИОЛОГИЯ.

Профиль (специальность) Биофизика 03.01.02

Предмет и задачи биофизики. Биологические и физиологические процессы и закономерности в живых системах. Методологические вопросы биофизики. История развития отечественной биофизики. Основные особенности кинетики биологических процессов. Описание динамики биологических процессов на языке кинетики. Математические модели. Задачи химической математического моделирования в биологии. Общие принципы построения математических Понятие адекватности модели реальному моделей биологических систем. объекту. Динамические модели биологических процессов. Линейные нелинейные процессы. Стационарные состояния биологических Устойчивость Множественность стационарных состояний. стационарных состояний. Модели триггерного типа. Примеры. Силовое и параметрическое переключение триггера. Гистерезисные явления. Колебательные процессы в биологии. Влияние температуры на скорость реакций в биологических системах. Взаимосвязь кинетических И термодинамических параметров. конформационных свойств биополимеров. Мембрана как универсальный компонент биологических систем. Развитие представлений о структурной организации мембран. Характеристика мембранных белков. Характеристика мембранных липидов. Динамика структурных элементов мембраны. Белоклипидные взаимодействия. Вода как составной элемент биомембран. Модельные мембранные системы. Монослой на границе раздела фаз. Бислойные мембраны. Физико-химические механизмы стабилизации Протеолипосомы. Особенности фазовых переходов в мембранных системах. Вращательная и трансляционная подвижность фосфолипидов, флип-флоп переходы. Подвижность мембранных белков. Влияние внешних (экологических) факторов на структурнофункциональные характеристики биомембран. Поверхностный заряд мембранных систем; происхождение электрокинетического потенциала. Явление поляризации в мембранах. Свободные радикалы при цепных реакциях окисления липидов в мембранах и других клеточных структурах. Образование свободных радикалов в тканях в норме и при патологических процессах. Роль активных форм кислорода. Антиоксиданты, механизм ИΧ биологического действия. Естественные антиоксиданты тканей и их биологическая роль. Основные типы сократительных Молекулярные механизмы подвижности подвижных систем. компонентов сократительного аппарата мышц. Принципы преобразования энергии Термодинамические, механохимических системах. энергетические мощностные характеристики сократительных систем. Функционирование поперечнополосатой мышцы позвоночных. Модели Хаксли, Дещеревского, Хилла. Гормональная рецепция. Общие закономерности взаимодействия лигандов с рецепторами; равновесное связывание гормонов. Роль структуры плазматической мембраны процессе передачи гормонального сигнала. Рецепторопосредованный внутриклеточный транспорт. Представления о цитоплазменнотранспорте. Методы исследования гормональных ядерном рецепторов. Сенсорная рецепция. Проблема сопряжения между первичным взаимодействием внешнего стимула с рецепторным субстратом и генерацией рецепторного (генераторного) потенциала. Общие представления о структуре и функции рецепторных клеток. Место рецепторных процессов в работе сенсорных систем.

Взаимодействие квантов с молекулами. Эволюция волнового пакета и результаты фемптосекундной спектроскопии. Первичные фотохимические реакции. Основные процесса. Механизмы фотобиологических фотобиологического фотохимических стадий. Кинетика фотохимических процессов. Проблема разделения зарядов и переноса электрона в первичном фотобиологическом процессе. Роль электронно-конформационных взаимодействий. Адаптация, устойчивость и надежность биологических систем разного уровня организации: клеток, организмов, популяций. Разнообразие ответных реакций индивидуумов в клеточных ансамблях и популяциях. Классификация воздействий. Слабые (фоновые) воздействия. Космические И периодические воздействия. Естественный радиационный фон и уровень радона в среде. Проблема озоновой дыры. ЭМ-излучения космических и земных источников. Магнитные поля Солнца. звезд, галактик и других объектов Вселенной. Циклы солнечной активности, их влияние на Землю. Свет и биоритмы. Биологические часы. Действие оптического излучения. Фотосинтез в море. Причины лимитирования первичной продукции. Фотоингибирование и фотодеструкция. Фоторегуляция роста Оптические свойства листьев высших растений и спектральные методы оценки фотосинтетического аппарата. функционального состояния Действие УФизлучения. Молекулярные механизмы фотоповреждения ДНК при действии УФизлучения экологического диапазона. Клеточные системы репарации ДНК. Фотоповреждение и фотореактивация микроорганизмов. Комбинированное действие излучения разных длин волн на клетку. Ферментативная реактивация. Молекулярные механизмы действия фотолиазы. Общая физическая характеристика ионизирующих излучений. Излучения инструмент как исследований структуры и свойств молекул. Гамма- и рентгеновские лучи. Рентгеноструктурный анализ, лучевая ультрамикрометрия, радиационнохимические методы. Ультрафиолетовое и видимое излучения. Спектроскопия в УФ и видимой области. Лазерная спектроскопия, исследование электронновращательных спектров, фотохимические методы исследования. Инфракрасное излучение, инфракрасная спектроскопия. Радиочастоты: СВЧ, УВЧ, ВЧ, НЧ. Микроволновая спектроскопия, спектроскопия ЭПР, ЯМР, диэлектрическая спектроскопия, методы электропроводности. Использование различных видов излучений медицине, технике и сельском хозяйстве. Естественный радиационный фон и уровень радона в среде. Проблема озоновой дыры. ЭМИ и ЭМП космических и земных источников. Магнитные поля Солнца, звезд, галактик и других объектов Вселенной. Циклы Солнечной активности, их влияние на Землю. Свет и биоритмы. Биологические часы.

Примерные вопросы к экзамену:

- 1. Классификация термодинамических систем. Первый и второй законы термодинамики в биологии.
- 2. Электронные уровни в биополимерах. Основные типы молекулярных орбиталей и электронных состояний, π-электроны, энергия делокализации. Схема Яблонского для сложных молекул.
- 3. Кинетика ферментативных процессов. Особенности механизмов ферментативных реакций. Понятие о физике ферментативного катализа.
- 4. Макромолекула как основа организации биоструктур. Статистический характер конформации биополимеров.
- 5. Особенности пространственной организации белков и нуклеиновых кислот.
- 6. Механизмы миграции энергии: резонансный механизм, синглет-синглетный и триплет-триплетный переносы, миграция экситона.
- 7. Характеристика мембранных белков. Характеристика мембранных липидов. Динамика структурных элементов мембраны.

- 8. Пассивный и активный транспорт веществ через мембраны.
- 9. Потенциал действия. Роль ионов Na и K в генерации потенциала действия в нервных и мышечных волокнах; роль ионов Ca²⁺ и Cl⁻ в генерации потенциала действия у других объектов.
- 10. Роль структуры плазматической мембраны в процессе передачи гормонального сигнала.
- 11.Окислительный стресс. Молекулярные механизмы повреждающего действия кислорода.
- 12.Основные стадии фотобиологического процесса. Механизмы фотобиологических и фотохимических стадий.
- 13. Фотохимические реакции в белках, липидах и нуклеиновых кислотах.
- 14.Прямое действие радиации на ферменты, белки, нуклеиновые кислоты, липиды и углеводы.
- 15. Анализ механизмов лучевого повреждения клеток.

Рекомендуемая литература

- 1. Рубин А.Б. Биофизика [в 2 т.] / А.Б. Рубин ; Моск. гос. ун-т им. М.В. Ломоносова.— М.: Изд-во Моск. ун-та: Наука, 2004.
- 2. Артюхов В.Г. Молекулярная биофизика: механизмы протекания и регуляции внутриклеточных процессов : учебное пособие / В.Г. Артюхов, О.В. Башарина ; Воронеж. гос. ун-т.— Воронеж : Издательско-полиграфический центр Воронежского государственного университета, 2012.—219 с.
- 3. Артюхов В.Г. Биофизика: учебник для ВУЗов /под ред. В.Г. Артюхова. М.: Академический проект, 2009. 294с.
- 4. Владимиров Ю.А. Лекции по медицинской биофизике: учеб. пособие / Ю.А. Владимиров, Е.В. Проскурина. М.: Академкнига, 2007. 432с.
- 5. Артюхов В.Г. Структурно-функциональное состояние биомембран и межклеточные взаимодействия : учеб. пособие / В.Г. Артюхов, М.А. Наквасина. Воронеж : ИПЦ ВГУ, 2008. 156с.

Профиль (специальность)Биохимия 03.01.04

низкомолекулярных лигандов (миоглобин, гемоглобин).

Предмет биологической химии, ее место в системе естественных наук. Белки. Аминокислоты и их свойства. Первичная структура белков, природа пептидной связи. Вторичная структура белка (α-спираль, β-слои). Третичная домены Четвертичная белка, И фолды. структура Взаимодействия, обеспечивающие структуру белков (ионные взаимодействия, гидрофобные взаимодействия, водородные связи, дисульфидные Структурные строения мембрано-связанных белков. Особенности (коллаген, кератины). Конформационная стабильность и подвижность белка. Денатурация белка и проблема ее обратимости. Взаимодействие белков и

Ферменты, их особенности как биокатализаторов, биологическая роль. Строение ферментов, активные центры. Механизм ферментативного катализа. Уравнение Михаэлиса-Ментен. Графические методы анализа ферментативных реакций. Физический смысл константы Михаэлиса. Максимальные скорости ферментативных реакций. Активность числа оборотов ферментов. И Специфичность ферментативного катализа. Ингибиторы ферментов. Обратимость ферментативного катализа. Кофакторы. Регуляция ферментативного катализа. Изо- и аллостерическое связывание лигандоврегуляторов с белком-ферментом. Кооперативные эффекты в ферментативном катализе. Изоферменты. Международная классификация ферментов. Специфическая локализация ферментов в клетке.

Нуклеиновые кислоты. Строение нуклеиновых кислот. Пуриновые и пиримидиновые основания. Углеводные компоненты. Мононуклеотиды. Нуклеозидмоно-, ди-, трифосфаты. АТФ и ее функции. ДНК и РНК, их структура и функции. Принцип комплементарности и его биологическая роль. Репликация, этапы синтеза ДНК и ферменты, осуществляющие процесс репликации. Репликация линейной и кольцевой ДНК. Транскрипция и процессинг РНК, ферменты и факторы транскрипции, этапы транскрипции и процессинга. Отличия процесса транскрипции у прокариот и эукариот. Функциональная значимость участков ДНК. Ген, цистрон, оперон. Принципы транскрипции. Хромосомы. Структура хроматина.

Биосинтез белка, его основные этапы. Активирование аминокислот. Транспортные РНК. АРС-азы. Информационная РНК и генетический код. Рибосомы и их структура. Рибосомальная РНК. Стадии биосинтеза белка – инициация, элонгация, терминация.

Углеводы и их биологическая роль. Классификация и номенклатура углеводов. Структура и свойства моно- и полисахаридов. Конформационные формы углеводов. Важнейшие представители углеводов. Обмен углеводов. Распад и биосинтез полисахаридов. Взаимопревращения углеводов. Трансферазные реакции. Анаэробный и аэробный распад углеводов. Различные виды брожений. Гликолитические ферменты. Гликолиз. Окислительное фосфорилирование на уровне субстрата. Никотинамидные коферменты – источник восстановительных эквивалентов в клетке.

Липиды и их биологическая роль. Общие свойства, распространение, классификация и номенклатура липидов. Строение и свойства нейтральных жиров и фосфолипидов. Гликолипиды. Стероиды. Процессы окисления жирных кислот. Биосинтез жирных кислот, нейтрального жира и фосфолипидов.

Витамины, коферменты и другие биологически активные вещества. Амид никотиновой кислоты. Липоевая кислота. Рибофлавин. Динуклеотиды (NAD, FAD). Биотин. Тиамин. Пантотеновая кислота, кофермент А (CoA). Пиридоксин- и пиридоксальфосфаты. Аскорбиновая кислота. Ретиноиды. Токоферол. Нафто- и убихиноны. Биогенные амины. Ацетилхолин. Железо-порфирины и хлорофилл. Железо-серные кластеры. Минеральный состав клеток и микроэлементы.

Образование АТФ и других макроэргических соединений в различных процессах распада углеводов, липидов и др. соединений. Терминальные процессы окисления. Коферменты — продукты окислительных реакций (NAD+/NAD+H; NADP+/NADP+H; убихинон/убихинол). Структура митохондрий и локализация компонентов дыхательной цепи млекопитающих. Дыхательная цепь — преобразователь энергии (теория электрохимического сопряжения П. Митчелла). Обратимая H+-ATPаза -, главное устройство для синтеза ATP в аэробных клетках. Цитохром P-450 и окислительная деструкция ксенобиотиков. Флавиновые ферменты. Убихиноны. Цитохромы и цитохромоксидаза. Цепь переноса электронов (дыхательная цепь). Энергетическое значение ступенчатого транспорта электронов от субстратов окисления к кислороду. Окислительное фосфорилирование в дыхательной цепи.

Регулирование и интеграция метаболизма. Ключевые пары метаболитов (NAD(P)+/NAD(P)·H; ATP/ADP; Ацил-СоА/СоА; лактат/пируват; (Јоксибутират/ацетоацетат) и факторы, влияющие на их концентрации. Дивергенция катаболических и анаболических цепей метаболизма. Регулирование активности ферментов их ковалентной модификацией: фосфорилирование, ацилирование, ADP-рибозилирование. Протеинкиназы и протеинфосфатазы. Каскадный принцип

регулирования ферментов. Гормоны в качестве первичных управляющих сигналов метаболизма. Рецепторы гормонов и G-белки. Механизмы и результаты действия инсулина, адреналина, глюкагона. Вторичные посредники передачи сигналов: циклические нуклеотиды, ионы Ca²⁺, фосфатидилинозитол. Тканевая специфичность метаболизма.

Примерные вопросы к экзамену:

- 1. Нуклеиновые кислоты: структура, физико-химические свойства.
- 2. Структурно-функциональные особенности белков.
- 3. Механизм действия ферментов.
- 4. Кинетика и факторы, влияющие на активность ферментов.
- 5. Структура и функционирование АТФ-азы.
- 6. Организация и принципы функционирования электронтранспортной цепи митохондрий.
- 7. Организация и функционирование электронтранспортной цепи хлоропластов.
- 8. Физико-химическая сущность фотосинтеза.
- 9. Биохимические особенности ассимиляции СО2 у С3- и С4- растений.
- 10. Планетарная роль фотосинтеза.
- 11. Биохимия окислительного пентозофосфатного пути и его роль в поддержании энергетического баланса клетки.
- 12. Общая схема катаболических процессов.
- 13. Организация и регуляция цикла трикарбоновых кислот.
- 14. Организация окислительного метаболизма и генетическая система митохондрий.
- 15. Хемио-осмотическая теория.
- 16. Формы запасания энергии: АТФ, электрохимический потенциал.
- 17. Мембранные потенциалы клетки. Механизмы транспорта ионов. Современные представления о каналах, ионных насосах мембран.
- 18. Законы биоэнергетики.
- 19. Транспорт веществ внутри клетки.
- 20. Современные представления о структуре гемоглобина и его функции.
- 21. Механизм транспорта газов кровью.
- 22. Активные формы кислорода: физиологическое значение, регуляция образования.
- 23. Механика и энергетика мышечного сокращения.
- 24. Основы физико-химической регуляции возникновения потенциала действия в сердечной мышце. Электромеханическое сопряжение.
- 25. Физико-химические механизмы регуляции температуры тела.
- 26. Биохимические основы проведения ПЦР.
- 27. Роль фитохромной системы в регуляции процесса цветения у растений.
- 28. Трансформация световой энергии при фотосинтезе. Регуляция процесса.

Литература

- 1. Жеребцов Н.А. Биохимия: учеб. / Н.А. Жеребцов, Т.Н. Попова, В.Г. Артюхов.
- Воронеж: Изд-во Воронеж. гос. ун-та, 2002. 696с.
- 2. Кнорре Д.Г. Биологическая химия / Д.Г. Кнорре, С.Д. Мызина. М.: Высш.шк., 2000.
- 3. Биохимия человека / Р. Марри и др. M.: Мир, 1993. T.1-2.
- 4. Филиппович Ю.Б. Основы биохимии / Ю.Б. Филиппович. М.: Высш.шк.; 1993.
- 5. Ленинджер A. Основы биохимии / A. Ленинджер. M.: Мир, 1985. T.1-3.

Профиль (специальность) Физиология растений 03.01.05

Физилогия растений - наука об организации и координации функциональных систем зеленого растения. Физико-химический, экологический и эволюционный аспекты физиологии растений. Ее задача - познание закономерностей жизнедеятельности растений, раскрытие молекулярных основ сложных функций и механизмов их регуляции в системе целого организма.

Методологические основы фитофизиологии. Редукционизм, органицизм и интегратизм как подходы к изучению живых систем. Сочетание различных уровней исследования (субклеточный, клеточный, организменный, биоценотический) как необходимое условие прогресса физиологии растений. Специфические методы фитофизиологии как науки.

Объект физиологии растений - эукариотный организм, осуществляющий фототрофный образ жизни. Специфика обмена зеленых растений по сравнению с другими объектами, характеризующимися фототрофным образом жизни. Космическая роль зеленого растения.

Этапы развития физиологии растений, их связь с общим развитием биологии и с практикой. Отечественные школы физиологов растений. Физиология растений - теоретическая основа растениеводства и новых отраслей биотехнологии. Физиологические основы продуктивности растений. Главные проблемы современной фитофизиологии.

Клетка как организм и как элементарная структура многоклеточного организма - сравнение функций. Специфические особенности растительной и животной клеток. Автотрофность и гетеротрофность.

Структурная организация клетки - основа ее биохимической активности и функционирования как целостной живой системы. Эволюция клеточной организации на примере сравнения прокариотной и эукариотной клетки.

Мембранные системы клетки и мембранный принцип ее организации. Структура и свойства биологических мембран, их роль в клетке (проницаемость, системы активного транспорта, биосинтезов и процессинга макромолекул). Модели структурно-функциональной организации мембран. Биохимическая и функциональная разнокачественность мембран.

Основные структурные элементы эукариотной клетки.

Ядро, его организация и функционирование. Генетический аппарат растительной клетки. Пластиды и митохондрии. Гипотезы происхождения клеточных органелл. Взаимодействие ядерного, митохондриального и хлоропластного геномов. Двойной генетический контроль за синтезом белков в хлоропластах и митохондриях.

Плазмалемма. Эндоплазматическая сеть, аппарат Гольджи, микротела (пероксисомы, глиоксисомы, лизосомы и др.), вакуоли, их строение и основные функции.

Цитоскелет, особенности его строения в связи с биологическими функциями.

Строение клеточной стенки, ее химический состав и основные функции (защитная, опорная, функции в морфогенезе, транспорте и др.).

Физико-химические свойства протоплазмы и их изменения в жизненном цикле клетки.

Функциональные взаимодействия различных органоидов клетки, их изменения в клеточном цикле и при ее дифференциации. Регуляторные системы клетки. Внутриклеточные факторы регуляции обмена: биохимические, генетические, мембранные. Регуляция с участием вторичных мессенджеров. Компартментация каталитических систем и метаболических фондов как один из механизмов регуляции клеточного метаболизма.

Физиологическая роль дыхания. Специфика дыхания у растений.

Развитие представлений о природе механизмов и о путях окислительновосстановительных превращений в клетке. Каталитические системы дыхания (дегидрогеназы, оксидазы, оксигеназы, карбоксилазы, трансферазы и др.). Механизмы активации водорода субстрата и молекулярного кислорода.

Митохондрии. Их структура и функции. Изменение ультраструктуры митохондрии в зависимости от функционального состояния организма.

Пути окисления органических веществ в клетке. Унификация субстратов дыхания. Механизм активации дыхательных субстратов, пути их включения в процессы биологического окисления.

Основные пути диссимиляции углеводов. Пентозомоно-фосфатный путь окисления глюкозы и его роль в конструктивном обмене клетки. Гликолитический путь окисления; основные стадии.

Гликолиз. Цикл Кребса. Глиоксалатный цикл. Механизмы регуляции циклов.

Электронтранспортная цепь митохондрий: структурная организация, основные компоненты, их окислительно-восстановительные потенциалы. Комплексы переносчиков электронов. Альтернативность каталитических механизмов биологического окисления.

Окислительное фосфорилирование. Единство элементарных энергетических процессов в живой природе. Фосфорилирование на уровне субстрата и фосфорилирование в дыхательной цепи. Основные положения хемиосмотической теории сопряжения Митчела. Мембраны как структурная основа биоэнергетических процессов. Трансформация энергии на сопрягающих мембранах. Электро-химический потенциал -движущая сила фосфорилирования. Регуляция электронного транспорта и фосфорилирования.

Дыхание как центральное звено обмена веществ. Значение дыхания в конструктивном метаболизме. Связь с другими функциями клетки. Дыхание роста и дыхание поддержания.

Количественные показатели газообмена (поглощение кислорода, выделение углекислоты, дыхательный коэффициент и др.).

Регуляция дыхания. Зависимость дыхания от внешних и внутренних факторов.

Развитие учения о фотосинтезе. Историческое значение работ К.А.Тимирязева.

Сущность и значение фотосинтеза. Общее уравнение фотосинтеза, его компоненты. Роль фотосинтеза в процессах энергетического и пластического обмена растительного организма. Фотосинтез как процесс трансформации энергии света в энергию химических связей. Масштабы фотосинтетической деятельности в биосфере.

Эволюция биосферы и фотосинтез.

Структурная организация фотосинтетического аппарата. Строение листа как органа фотосинтеза, изменения в онтогенезе. Хлоропласты. Основные элементы структуры хлоропластов (двойная мембрана, матрикс, тилакоиды, граны). Онтогенез хлоропластов.

Эволюция структуры фотосинтетического аппарата.

Пигментные системы фотосинтезирующих организмов. Хлорофиллы. Химическая структура, спектральные свойства. Отдельные представители группы хлорофиллов. Распространение хлорофиллов среди различных групп организмов. Функции хлорофиллов. Основные этапы биосинтеза молекулы хлорофилла. Хлорофилл-белковые комплексы.

Фикобилины. Распространение, химическое строение, спектральные свойства. Роль в фотосинтезе.

Каротиноиды. Химическое строение, свойства. Спектры поглощения. Функции в фотосинтезе.

Регуляция биосинтеза пигментов. Зависимость биосинтеза пигментов от интенсивности и качества света, снабжения $C0_2$, 0_2 и минеральными элементами. Явление хроматической адаптации.

Функциональное и экологическое значение спектрально-различных форм пигментов у фотосинтезирующих организмов.

Первичные процессы фотосинтеза. Электронно-возбужденные состояния пигментов (синглетное, триплетное). Типы дезактивации возбужденных состояний. Флуоресценция. Механизмы миграции энергии в системе фотосинтетических пигментов.

Представление о фотосинтетической единице. Антенные комплексы. Реакционные центры, модели их структурной организации. Преобразование энергии в реакционном центре. Окислительно-восстановительные превращения хлорофилла реакционного центра.

Электрон-транспортная цепь фотосинтеза. природа ОСНОВНЫХ компонентов. Представление о совместном функционировании двух фотосистем. Эффекты Эмерсона. Основные функциональные комплексы электронтранспортной цепи - ФС1, ФС2, цитохром b₆/f комплекс; их структура и функции. Образование соединений с высоким восстановительным потенциалом. Системы фотоокисления воды и выделения кислорода при фотосинтезе. Участие хинонов, цитохромов, Си- и Fe-протеидов в реакциях транспорта электронов. Циклические и нециклические потоки электронов, системы регуляции.

Фотофосфорилирование. Характеристика основных типов фотофосфорилирования - циклического, нециклического, псевдоциклического. Механизм сопряжения электронного транспорта и образования АТФ.

Темновая стадия фотосинтеза. Связь фотосинтетической ассимиляции C02 с фотохимическими реакциями. Природа первичного акцептора углекислоты. Химизм реакций цикла Кальвина, его ключевые ферменты. Первичные продукты фотосинтеза, их превращения. Регенерация акцепторов C0₂. Первичный синтез углеводов. Фотодыхание. Цикл Хэтча-Слэка-Карпилова. Особенности С₃- и С₄- растений и CAM-тип метаболизма.

Взаимосвязь фотосинтеза и процессов усвоения азота. Функциональная роль хлоропласта. Потоки метаболитов в хлоропласт и из него.

Экология фотосинтеза. Зависимость фотосинтеза от внешних условий и состояния организма. Влияние на фотосинтез температуры, условий освещения, содержания углекислоты, условий минерального питания, водоснабжения. Компенсационная точка при фотосинтезе и ее зависимость от особенностей организма. Ассимиляционное число.

Фотосинтез и общая продуктивность растительных организмов и их сообществ. Фотосинтез в онтогенезе растения. Теория фотосинтетической продуктивности.

Культура растений в условиях искусственного освещения и при повышении концентрации C0₂ и 0₂. Фотосинтез в условиях промышленной фитотроники и в замкнутых системах жизнеобеспечения.

Эволюция фотосинтеза. Хемосинтез. Бактериальный фотосинтез.

Значение воды в жизнедеятельности растений. Растения и круговорот воды на Земле.

Молекулярная структура и физические свойства воды. Взаимодействие молекул воды и биополимеров, гидратация. Свободная и связанная вода. Физиологическое значение различных фракций воды в растении.

Основные закономерности поглощения воды клеткой. Набухание биоколлоидов, осмос - явления, лежащие в основе поступления воды в растение. Термодинамические показатели, определяющие поведение воды: активность воды, химический потенциал, водный потенциал. Составляющие водного потенциала: осмотический потенциал, матричный потенциал, потенциал давления. Градиент водного потенциала как движущая сила поступления и передвижения воды в системе "почва-растение-атмосфера", в клетках, тканях и целом растении.

Механизм передвижения воды по растению. Пути ближнего и дальнего транспорта. Движущие силы восходящего тока воды в растении. Верхний и нижний концевые двигатели. Корневое давление, механизм его развития и значение в жизни растений. Натяжение воды в сосудах; значение сил молекулярного сцепления.

Выделение воды растением. Гуттация, транспирация. Физиологическое значение этих процессов. Количественные показатели транспирации: интенсивность, продуктивность, транспирационный коэффициент. Устьичная и кутикулярная транспирация. Строение устьиц и механизмы их движений, влияние света. Устьичное и внеустьичное регулирование транспирации. Влияние внешних факторов (света, температуры, влажности воздуха и почвы и др.) на интенсивность транспирации. Суточный ход транспирации.

Экология водообмена растений. Особенности водообмена у растений разных экологических групп (ксерофитов, мезофитов, гигрофитов, галофитов) и пути адаптации растений к водному дефициту.

Роль растений в круговороте минеральных элементов в биосфере. Потребность растений в элементах минерального питания. Содержание и соотношение минеральных элементов в почве и в растениях и факторы, их определяющие. Классификации элементов, необходимых для растений. Основная функция ионов в метаболизме: структурная и каталитическая.

Почва как источник минеральных элементов. Твердая фаза почвы, почвенный раствор, состав и структура почвенного поглощающего комплекса.

Корень как орган поглощения минеральных элементов и воды, а также место специфических синтезов. Система взаимодействия "корень-почва". Рост корня как основа поступления минеральных элементов.

Ближний транспорт ионов в тканях корня. Симпластический и апопластический пути. Дальний транспорт. Восходящее передвижение веществ по растению: пути и механизмы. Перераспределение и реутилизация ионов в растении. Поступление и превращения ионов и дыхание. Взаимосвязь минерального питания с процессами роста и развития растений.

Механизм поглощения ионов. Роль процессов диффузии и адсорбции, их характеристика. Понятия водного свободного пространства и Доннановского свободного пространства. Транспорт ионов через плазматическую мембрану. Пассивный перенос. Активный транспорт ионов (первичный и вторичный активный транспорт). Уравнение Нернста. Движущие силы транспорта ионов и формы потребляемой энергии. Механизмы транспорта ионов через мембраны: АТФазы, редокс-цепи, ионные каналы, портерные системы (симпорт, антипорт, унипорт).

Кинетика процессов поглощения. Участие мембранных структур клетки в поглощении и компартментации ионов. Роль вакуоли. Пиноцитоз. Взаимосвязь процессов поглощения веществ корнем с другими функциями растения (дыханием, фотосинтезом, водообменом, биосинтезами, ростом и др.).

Физиологическая и биохимическая роль основных элементов питания.

Азот и его значение в жизни растений. Круговорот азота в природе. Источники растений. Симбиотическая фиксация молекулярного Структурная и функциональная характеристика нитрогеназы. Минеральные формы азота, используемые растением. ферментные системы, участвующие в усвоении нитратов, регуляция их синтеза и активности. Биохимические пути ассимиляции аммиака в растении. Синтез аминокислот, амидов, реакции переаминирования. Запасные И транспортные формы минерального органического азота, накопление нитратов в тканях. Круговорот азота по растению.

Азотный обмен и дыхание. Азотный обмен и фотосинтез:

взаимодействие азотного и углеродного потоков; роль первичных реакций фотосинтеза в усвоении окисленного азота.

Сера. Основные соединения серы в растении, их роль в структурной организации клетки, участие в окислительно-восстановительных реакциях. Источники серы для растения. Механизм восстановления сульфатов, отдельные этапы процесса, ферментные системы.

Фосфор. Значение разных типов фосфорсодержащих соединений в клетке. Поступление фосфора в клетку, пути его включения в обмен. Участие соединений, содержащих фосфор, в образовании клеточных структур, ферментных систем. Макроэргические соединения фосфора, их роль в энергетическом обмене.

Калий, его значение в обмене растительного организма. Влияние калия на физические свойства протоплазмы, на ферменты углеводного обмена, синтез белков и др. Роль калия в поддержании ионного баланса в тканях, в процессах осморегуляции.

Кальций. Структурообразовательная роль кальция. Участие в образовании клеточной стенки, поддержании структурной целостности мембран и регуляции их проницаемости. Регуляторная роль кальция.

Магний. Формы участия магния в метаболизме. Магний в составе хлорофилла. Участие в реакциях переноса фосфатных групп, в формировании функционально-активных клеточных структур.

Микроэлементы. Представления о роли микроэлементов в метаболизме растений. Металлы как компоненты простетических групп и как активаторы ферментных систем. Особенности поступления микроэлементов в растения. Физиологическая роль железа, меди, марганца, молибдена, цинка, бора и других микроэлементов. Участие микроэлементов в формировании и функционировании электронтранспортных цепей фотосинтеза и дыхания, в азотном и углеводном обмене, в ростовых процессах и других реакциях метаболизма.

Водная, песчаная и почвенная культуры, их применение в физиологии растений. Питательные смеси. Физиологически кислые и физиологически основные соли. Взаимодействие ионов (антагонизм, синергизм, аддитивность). Физиологические основы применения удобрений. Гидропоника.

Значение работ Д.Н.Прянишникова и Д.А.Сабинина в создании теории минерального питания.

Корневое питание как важнейший фактор управления продуктивностью и качеством урожая. Генотипические различия в минеральном питании разных видов и сортов.

Понятие о восходящем и нисходящем токах веществ в растении. Передвижение органических веществ. Ближний и дальний (флоэмный) транспорт ассимилятов.

Транспортные формы веществ. Возможный механизм и регуляция флоэмного транспорта. Зависимость транспорта веществ от температуры, водного режима, минерального питания.

Донорно-акцепторные взаимодействия и роль транспортных систем в интеграции физиологических функций целого растения.

Определение понятий "рост" и "развитие" растений. Проблема роста и развития на клеточном и молекулярном уровнях. Существование организма как развертывание во времени генетической программы. Воздействие на этот процесс внутренних и внешних факторов.

Общие закономерности роста, типы роста у растений. Организация меристем корня и стебля. Рост и деятельность меристем. Кинетика ростовых процессов и их свойства. Ритмика, биологические часы. Корреляции. Полярность. Регенерация.

Рост растений и среда. Влияние температуры, света, воды, газового состава атмосферы, элементов минерального питания на ростовые процессы.

Клеточные основы роста. Фазы роста клеток и их характеристики. Изменения

морфологии и метаболизма при прохождении каждой фазы. Понятие о клеточном цикле, влияние различных факторов на деление клеток. Рост клетки в фазе растяжения, механизм действия ауксина на этот процесс.

Дифференцировка клеток и тканей; компетенция и детерминация. Дифференциальная экспрессия генома как фактор реализации генетических программ развития. Тотипотентность растительной клетки.

Системы регуляции функций целого растения: трофическая, гормональная, электрическая. Доминирующие центры и физиологические градиенты. Системы восприятия и передачи сигналов. Системы связей и регуляторных контуров. Элементы теории сложных систем и их приложение к анализу систем регуляции в растении.

Механизм регуляции ростовых процессов. Фитогормоны (ауксины, гиббереллины, цитокинины, абсцизовая кислота, этилен, брассиностероиды), их строение, биосинтез, транспорт, физиологическое действие. Молекулярные основы действия гормонов и ингибиторов роста растений. Взаимодействие между различными гормонами. Синтетические регуляторы и ингибиторы роста (гербициды, ретарданты, морфактины), их практическое применение.

Ростовые и тургорные движения растений. Тропизмы (фото-, гео-, электро-, термотропизмы). Гормональная природа тропизмов. Настии. Сейсмонастические движения. Раздражимость; фитохромная и криптохромная системы; электрофизиологические процессы.

Жизненный цикл высших растений. Основные этапы онтогенеза (эмбриональный, ювенильный, репродуктивный, зрелости, старения), их морфологические, физиологические и метаболические особенности. Состояние покоя у растений. Типы покоя и их значение для жизнедеятельности растений.

Механизмы морфогенеза растений. Индукция генетических программ, морфогенетические градиенты и ориентация клеток в пространстве. Целостность и коррелятивное взаимодействие органов. Физиологические и молекулярные основы эмбриогенеза растений. Созревание и прорастание семян как фазы морфогенеза.

Внутренние и внешние факторы, определяющие переход растений от вегетативного развития к генеративному. Индукция цветения. Яровизация. Фотопериодизм. Роль фитохромной системы в фотопериодических реакциях. Типы фотопериодической реакции. Природа флорального стимула. Гипотезы о бикомпонентной природе флоригена, о многокомпонентном контроле цветения. Цветение как многоступенчатый процесс. Эвокация цветения и ее регуляция. Модель переключения генной активности. Закладка и рост соцветий и цветка. Оплодотворение.

Детерминация пола. Генетические, фенотипические и гормональные факторы, определяющие пол у растений.

Физиология вегетативного размножения. Размножение клубнями, луковицами, корневищами, усами, отводками и черенками.

Культура изолированных зародышей, органов, тканей, клеток, протопластов как модель для изучения процессов роста и развития. Биология изолированных клеток и тканей, клеточная биотехнология. Использование метода культуры клеток для изучения биологии клетки и понимания взаимоотношений части и целого при функционировании клеток в растительном организме.

Пути практического использования культуры растительных клеток (освобождение от вирусных инфекций, массовое размножение, сохранение генофонда редких видов, получение биомассы клеток-продуцентов практически важных веществ.

Устойчивость как приспособление растений к условиям существования. Ответные реакции растений на действие неблагоприятных факторов. Общие принципы адаптивных реакций растений на экологический стресс (изменение экспрессии генов и включение синтеза стрессовых, мембранных, структурных белков;

перестройки мембранных систем и физиологических процессов; синтез

протекторных соединений и др.). Биохимическая адаптация. Пути повышения устойчивости растений.

Реакция растений на температуру. Влияние низких положительных температур (холодоустойчивость растений), низких отрицательных температур (морозоустойчивость растений) и почвенно-климатических факторов (зимостойкость растений), высоких положительных температур (жароустойчивость растений). Закаливание растений.

Реакция растений на водный дефицит (засухоустойчивость растений). Атмосферная и почвенная засуха. Приспособление различных ксерофитных форм и мезофитных растений к низкому водному потенциалу и гигрофитов - к гипоксии. Пути адаптации растений к гипо- и аноксии.

Реакция растений на высокое содержание солей в почве (солеустойчивость растений). Типы засоления почв. Классификация растений по отношению к засолению почв. Механизмы адаптации галофитных организмов к солям. Особенности загрязнения почв тяжелыми металлами. Токсичность их для высших растений.

Радиоустойчивость растений и ее механизмы.

Загрязнение атмосферы сернистым газом, оксидами азота и углерода, соединениями фтора и др. Токсичность их действия на растения. Формирование устойчивости к газам (регулирование их поступления, поддержание внутриклеточного гомеостаза, детоксикация образующихся ядов).

Физиологические и биохимические основы устойчивости высших растений к патогенным микроорганизмам и другим биотическим факторам. Конституционные и индуцированные защитные свойства. Приобретенный (индуцированный) иммунитет.

Литература:

- 1. Якушкина Н.И. Физиология растений. 2-ое изд., перераб. М., "Просвещение", 1993.- 351с.
- 2. Гудвин Т. Введение в биохимию растений. В 2 т. / Гудвин Т., Мерсер Э. Пер. с англ.- М."Мир", 1986.
- 3. Полевой В.В. Физиология растений. Учеб. для вузов. М.: "Высшая школа", 1989. 464с.
- 4. Головко Т.К. Дыхание растений. Физиологические аспекты. С.-Петербург, 1999г.
- 5. Практикум по минеральному питанию, водному режиму, росту и развитию растений /Епринцев А.Т., Хожаинова Г.Н. Воронеж: Изд-во Воронеж. Ун-та, 2002. 86c.
- 6. Практикум по физиологии растительной клетки /Епринцев А.Т., Хожаинова Г.Н., Иванов Б.Ф. Воронеж: Изд-во Воронеж. Ун-та, 2002. 75с.
- 7. Кузнецов В.В. Физиология растений. / В.В. Кузнецов, Г.А. Дмитриева // Москва. Абрис. 2011. 783с.
- 8. Ермаков В.П. Физиология растений. M. Академия. 2007. 634c.

Профиль (специальность) Ботаника 03.02.01

Надцарство Прокариоты. Общая характеристика (строение клетки, способы питания, размножения, основы систематики). Эволюция организаций и структур в подцарстве. Настоящие водоросли. Размножение и жизненные циклы водорослей. Экология водорослей. Значение водорослей в природе и в жизни человека. Особенности строения клетки и вегетативных органов грибов, их своеобразие и видоизменения. Способы размножения грибов. Вегетативное, бесполое и половое размножение. Экология грибов. Значение грибов в природе и жизни человека. Место грибов в системе органического мира, различные взгляды на их происхождение. Классификация грибных организмов. Низшие и высшие грибы. Растительная клетка. План строения и морфолого-физиологические особенности. Растительные ткани. Основные типы и проблемы классификации. Общая

характеристика побега. Главные метаморфозы побега и его частей. Общая характеристика корня. Метаморфозы корней. Цветок. План строения, характеристика андроцея и гинецея. Методы описания структуры цветка (формула, диаграмма). Семя (строение и функции, типы семян однодольных и двудольных растений). Плод (строение, подходы к классификации, способы Основные отличия высших растений от распространения плодов и семян). низших. Первенцы наземной флоры – отделы Rhyniophyta, Zosterophyllophyta: общая характеристика, представители. Цикл развития высших растений, его происхождение. Причины преимущественного развития спорофита в условиях суши. Общая характеристика отдела Bryophyta как гаметодинамической линии эволюции высших растений. Разделение на классы и подклассы, их краткая Значение. Общая характеристика отдела Lycopodiophyta. Сравнительная характеристика классов Lycopodiopsida, Isoetopsida. Вымершие плауновидные. Значение. Общая характеристика отдела Polypodiophyta. Краткая характеристика классов Ophioglossopsida, Marattiopsida, Polypodiopsida: основные представители, распространение. особенности строения спорофитов гаметофитов. Голосеменные. Общая характеристика, особенности развития гаметофитов на примере Pinus sylvestris. Современное разделение на классы и их краткая характеристика: представители, распространение, значение. Общая характеристика отдела Magnoliophyta. Отличия покрытосеменных от других отделов высших растений. Сравнительная характеристика классов Magnoliopsida, Liliopsida. Разделение на подклассы. Современные представления о жизненных формах растений. Особенности двойного оплодотворения у покрытосеменных растений.

Примерные вопросы к экзамену:

- 1. Надцарство Прокариоты. Общая характеристика (строение клетки, способы питания, размножения, основы систематики).
- 2. Размножение и жизненные циклы водорослей.
- 3. Экология водорослей. Значение водорослей в природе и в жизни человека.
- 4. Особенности строения клетки и вегетативных органов грибов, их своеобразие и видоизменения. Способы размножения грибов. Вегетативное, бесполое и половое размножение. Экология грибов. Значение грибов в природе и жизни человека.
- 5. Классификация грибных организмов. Низшие и высшие грибы.
- 6. Растительная клетка. План строения и морфолого-физиологические особенности. Растительные ткани. Основные типы и проблемы классификации.
- 7. Общая характеристика побега. Главные метаморфозы побега и его частей.
- 8. Общая характеристика корня. Метаморфозы корней.
- 9. Цветок. План строения, характеристика андроцея и гинецея. Методы описания структуры цветка (формула, диаграмма).
- 10. Семя (строение и функции, типы семян однодольных и двудольных растений). Плод (строение, подходы к классификации, способы распространения плодов и семян).
- 11. Основные отличия высших растений от низших. Первенцы наземной флоры отделы Rhyniophyta, Zosterophyllophyta: общая характеристика, представители.
- 12. Цикл развития высших растений, его происхождение. Причины преимущественного развития спорофита в условиях суши.
- 13. Общая характеристика отдела Bryophyta как гаметодинамической линии эволюции высших растений. Разделение на классы и подклассы, их краткая характеристика. Значение.

- 14. Особенности строения спорофитов и гаметофитов.
- 15. Голосеменные. Общая характеристика, особенности развития гаметофитов на примере *Pinus sylvestris*. Современное разделение на классы и их краткая характеристика: представители, распространение, значение.
- 16. Подклассы Lamiidae, Asteridae: краткая характеристика основных семейств (представители, распространение, жизненные формы, особенности вегетативных органов, строение цветка, тип плода, значение).
- 17. Современные представления о жизненных формах растений.
- 18. Особенности двойного оплодотворения у покрытосеменных растений.

Литература

- 1. Ботаника: в 4 томах. Под ред. А.К. Тимонина. М. 2007.
- 2. Лотова Л.И. Ботаника. Морфология и анатомия высших растений. М. КомКнига. 2007. 510c.

Профиль (специальность) Зоология 03.02.04

Общая характеристика простейших. Важнейшие особенности основных типов и классов. Разнообразие образа жизни и экологической адаптации одноклеточных животных. Их роль в природе и для человека. Основные гипотезы происхождения одноклеточных - сукцессивная и эндосимбиотическая, их достоинства и противоречия. Филогенетические взаимоотношения основных типов простейших. Основные теории происхождения многоклеточных животных. Разнообразие фагоцителообразных предков многоклеточных. Направления, этапы и результаты их эволюции. Губки и кишечнополостные как низшие многоклеточные. Сочетание в их строении и физиологии архаичных и ароморфных черт. Разнообразие их организации, образа жизни и адаптивных особенностей. Роль в природе. Плоские черви как низшие билатеральные трехслойные животные. Проявление в их организации и физиологии основных эволюционных закономерностей в связи с особенностями образа жизни представителей различных классов. Роль В природе ДЛЯ Происхождение. Прогрессивные особенности организации круглых червей, обеспечившие их широкую адаптивную реакцию. Классификация. Важнейшие черты классов Gastrotricha, Nematoda, Rotatoria, Gordiacea. Экологические группы Происхождение круглых червей. Кольчатые черви как высшие червеобразные, метамерные целомические трохофорные животные. Основные разнообразие Классификация ароморфозы. И экологических адаптаций. Эволюционное значение. Роль в природе и для человека. Моллюски как особая первичноводных целомических несегментированных трохофорных животных. Сочетание плезиоморфных и апоморфных черт в их организации. Классификация. Важнейшие черты подтипов и классов. Происхождение и филогенетические связи между классами. Роль в природе и для человека. Членистоногие как высший тип первичноротых животных. Основные ароморфозы, позволившие им освоить различные среды обитания. Классификация, важнейшие черты организации и среда обитания представителей подтипов и классов. Ракообразные как первичноводные членистоногие, сохранившие комплекс плезиоморфных черт в строении и физиологии. Классификация, разнообразие, экологические адаптации, роль в природе и для человека. Насекомые как высшие трахейнодышащие членистоногие. Ароморфозы, позволившие им широко освоить наземную и воздушную среды. Важнейшие черты организации. Классификация, разнообразие, экологические адаптации, роль в природе и для человека. Общая характеристика иглокожих как вторичноротых древних морских животных, обладающих вторичной радиальной симметрией. Особенности организации и

образа жизни морских звезд, морских ежей и голотурий. Общая характеристика паукообразных, их роль в природе.

Тип Хордовые. Особенности организации и классификация хордовых. Тип Хордовые. Происхождение И направления эволюции. Позвоночные. Круглоротые. Особенности организации, систематика филогения. И Позвоночные. Хрящевые рыбы. Костные рыбы. Особенности организации. Филогения. Сравнительная характеристика покровов и мускулатуры. Основные направления эволюционных преобразований покровов мускулатуры. Позвоночные. Осевой скелет, скелет поясов и конечностей. Сравнительная характеристика скелета в ряду хордовых. Позвоночные. Череп и его эволюционные преобразования в ряду позвоночных. Черты прогресса и адаптивные особенности черепа позвоночных. Позвоночные. Особенности развития. Анамнии и амниоты. Провизорные органы. Типы яиц. Особенности развития. Анамнии и амниоты. Гаструляция. Гисто- и органогенез. Типы дробления. Появление яйцеживорождения и живорождения. Позвоночные. Особенности строения дыхательной системы ряду В хордовых и эволюционные преобразования. Позвоночные. Выделительная система в ряду хордовых. Особенности и направления ее эволюции. Позвоночные. Способы поддержания гомеостаза. Терморегуляция. Осморегуляция. Сравнительная характеристика кровеносной системы в ряду позвоночных. Сердце. Круги кровообращения. Сосуды и их преобразования. Позвоночные. Сравнительная характеристика половой системы и ее эволюционные преобразования в ряду хордовых. Покровы и их производные. Окраска и ее значение. Позвоночные. Земноводные. Этологическая характеристика позвоночных. Особенности строения, классификация и происхождение. Пресмыкающиеся. Особенности организации, классификация происхождение. Птицы. Особенности происхождение организации, классификация И птиц. Млекопитающие. Особенности организации, классификация и происхождение. Адаптивные особенности млекопитающих. Теории происхождения хордовых. Основные этапы эволюции хордовых.

Примерные вопросы к экзамену:

1.Общая характеристика простейших. Важнейшие особенности основных типов и классов. Разнообразие образа жизни и экологической адаптации одноклеточных

животных. Их роль в природе и для человека.

- 2. Основные гипотезы происхождения одноклеточных сукцессивная и эндосимбиотическая, их достоинства и противоречия. Филогенетические взаимоотношения основных типов простейших.
- 3. Основные теории происхождения многоклеточных животных. Разнообразие фагоцителообразных предков многоклеточных. Направления, этапы и результаты их эволюции.
- 4. Губки и кишечнополостные как низшие многоклеточные. Сочетание в их строении и физиологии архаичных и ароморфных черт. Разнообразие их организации, образа жизни и адаптивных особенностей. Роль в природе.
- 5. Плоские черви как низшие билатеральные трехслойные животные. Проявление в их организации и физиологии основных эволюционных закономерностей в связи с особенностями образа жизни представителей различных классов. Роль в природе и для человека. Происхождение.
- 6. Прогрессивные особенности организации круглых червей, обеспечившие их широкую адаптивную реакцию. Классификация. Важнейшие черты классов Gastrotricha, Nematoda, Rotatoria, Gordiacea. Экологические группы нематод. Происхождение круглых червей.

- 7. Кольчатые черви как высшие червеобразные, метамерные целомические трохофорные животные. Основные ароморфозы. Классификация и разнообразие экологической адаптации. Эволюционное значение. Роль в природе и для человека.
- 8. Моллюски как особая группа первичноводных целомических несегментированных трохофорных животных. Сочетание плезиоморфных и апоморфных черт в их организации. Классификация. Важнейшие черты подтипов и классов. Происхождение и филогенетические связи между классами. Роль в природе и для человека.
- 9. Членистоногие как высший тип первичноротых животных. Основные ароморфозы, позволившие им освоить различные среды обитания. Классификация, важнейшие черты организации и среда обитания представителей подтипов и классов.
- 10. Ракообразные как первичноводные членистоногие, сохранившие комплекс плезиоморфных черт в строении и физиологии. Классификация, разнообразие, экологические адаптации, роль в природе и для человека.
- 11. Насекомые как высшие трахейнодышащие членистоногие. Ароморфозы, позволившие им широко освоить наземную и воздушную среды. Важнейшие черты организации. Классификация, разнообразие, экологические адаптации, роль в природе и для человека.
- 12. Общая характеристика паукообразных, их роль в природе.
- 13. Тип Хордовые. Особенности организации и классификация хордовых.
- 14. Тип Хордовые. Происхождение и направления эволюции.
- 15. Позвоночные. Хрящевые рыбы. Костные рыбы. Особенности организации. Филогения.
- 16. Позвоночные. Сравнительная характеристика покровов и мускулатуры. Основные направления эволюционных преобразований покровов и мускулатуры.
- 17. Позвоночные. Осевой скелет, скелет поясов и конечностей. Сравнительная характеристика скелета в ряду хордовых.
- 18. Позвоночные. Череп и его эволюционные преобразования в ряду позвоночных. Черты прогресса и адаптивные особенности черепа позвоночных.
- 19. Позвоночные. Особенности развития. Анамнии и амниоты. Провизорные органы. Типы яиц.
- 20. Позвоночные. Особенности развития. Анамнии и амниоты. Гаструляция. Гисто- и органогенез. Типы дробления. Появление яйцеживорождения и живорождения.
- 21. Позвоночные. Выделительная система в ряду хордовых. Особенности и направления ее эволюции.
- 22. Позвоночные. Способы поддержания гомеостаза. Терморегуляция. Осморегуляция.
- 23. Позвоночные. Сравнительная характеристика половой системы и ее эволюционные преобразования в ряду хордовых.
- 24. Позвоночные. Этологическая характеристика позвоночных.
- 25. Земноводные. Особенности строения, классификация и происхождение.
- 26. Пресмыкающиеся. Особенности организации, классификация и происхождение.
- 27. Птицы. Особенности организации, классификация и происхождение птиц.
- 28. Млекопитающие. Особенности организации, классификация и происхождение. Адаптивные особенности млекопитающих.
- 29. Хордовые. Теории происхождения хордовых.

30. Хордовые. Основные этапы эволюции хордовых.

Литература

- 1.Константинов В.Н. Зоология позвоночных / В.Н. Константинов, С.П. Шаталова // М. : Академия. 2004. 527с.
- 2.Догиль В.А. Зоология безпозвоночных (8-е изд.) М.: Альянс. 2009. 605с.
- 3. Островерхова Г.П. Зоология беспозвоночных. Томск: Изд-во Томского ун-та. 2005. 659c.

Профиль (специальность) Энтомология 03.02.05

Энтомология как наука и ее содержание. Предмет энтомологии, роль насекомых в природе и их значение для человека. История энтомологии, основные достижения мировой и отечественной энтомологии. Задачи общей и прикладной энтомологии. Строение тела и покровов. Подразделение тела на отделы и сегменты. Покровы и их функции. Строение и химический состав кутикулы. Роль кутикулы в качестве физического и физиологического барьеров. Проницаемость кутикулы, пассивный и активный транспорт воды через кутикулу. Структура, пигментная окраска, кутикулярные выросты и волоски, структурная и покровов. Система рисунка покровов. Регуляция окраски и ее защитное значение. Железы. Классификация секретирующих структур и органов. Экзокринные и эндокринные железистые структуры и их эволюция. Функциональные типы желез назначение: линочные, смазочные, слюнные, шелкоотделительные, восковые, лаковые, пахучие, ядовитые и феромонные. Скелет и мускулатура. Хитиновая кутикула как основа скелета насекомых и всех членистоногих. Роль и преимущества наружного скелета. Первичная и вторичная сегментация. Строение туловищного сегмента, швы и сочленения. Скелетные и висцеральные мышцы, их строение и физиологические особенности. Соединение мышц с покровами тела. Сегментарный состав и номенклатура частей головы. Происхождение головных придатков. Основные типы ротовых аппаратов (грызущий, лижуще-сосущий, колюще-сосущий). Приспособления к приему жидкой пищи в разных экологических группах. Антенны, основные и специализированные типы антенн. Грудные сегменты и конечности. Строение грудного отдела. Основные мышцы груди. Особенности строения грудного отдела у представителей разных отрядов насекомых. Строение и мускулатура грудных конечностей. Функциональные типы конечностей и их специализация в связи с образом жизни. Крыло, его строение и происхождение. Сочленение крыла с телом. Работа летательной мускулатуры. Складывание, расправление и сцепление крыльев. Специализация летательного аппарата в разных отрядах насекомых. Типы полета. Биологическое значение полета и его роль в эволюции насекомых. Брюшной отдел. Сегментарный состав брюшка и строение брюшного сегмента. Мускулатура. Брюшные конечности, не связанные С размножением представителей разных отрядов Первичнобескрылых насекомых. Брюшные ноги гусениц. Наружные половые органы. Половые придатки самцов и самок, их модификации и значение в систематике насекомых. Жало пчелы. Пищеварительный аппарат. Строение Морфологические, пищеварительной системы. гистологические ультраструктурные особенности передней, средней И задней кишки. Перитрофическая мембрана. Фильтрационные камеры. Внекишечное пищеварение. Роль симбиотических микроорганизмов в усвоении расщепляемой растительной пищи. Дыхание. Трахейное дыхание наземных членистоногих. Особенности дыхательной системы насекомых. Типы трахейной системы. трахейной системы. Строение дыхалец,

замыкательного и фильтрующего аппаратов. Дыхательные движения и их регуляция. Органы дыхания водных насекомых. Трахейные жабры у личинок стрекоз, ручейников). Особенности амфибиотических насекомых (поденок, газообмена насекомых. Дыхание и регуляция температуры тела. Кровеносная и выделительная системы. Формирование и строение полости тела насекомых. Специфика кровеносной системы, строение и иннервация сердца. Циркуляция крови. Состав и функция гемолимфы. Перикардиальные клетки. Строение и функция мальпигиевых сосудов, лабиальные железы. Нефроциты и другие органы накопления. Гормональная регуляция экскреции. Жировое тело, его строение и назначение. Жировое тело источник метаболической Строение органов Биолюминесценция насекомых. функционирование и биологическое значение. Значение жировой ткани при метаморфозе и развитии. Нервная система. Общий план строения и основные подразделения. Функции головных, грудных и брюшных ганглиев. Головной мозг и особенности его строения у общественных насекомых. Брюшная нервная цепочка. Механизм работы центральной нервной системы. Организация периферической и симпатической нервной систем. Органы чувств насекомых. Классификация проприоцепторы). рецепторов (экстероцепторы, Основные типы насекомых. Морфо- функциональные признаки механо-, фоно-, хемо-, гигро-, термо- и фоторецепторов. Строение органов зрения насекомых (сложные и простые глаза, дорсальные и латеральные глазки). Органы механорецепции, слуха, обоняния и зрения насекомых. Образование изображения в фасеточных глазах. Цветовое зрение. Роль органов чувств в жизни насекомых (питание. размножение, расселение). Инстинкты и рефлексы насекомых. Ориентация во времени и пространстве. Сигнализация у насекомых. Звуковая и химическая коммуникация. Пресоциальный уровень организации насекомых (агрегация, забота о потомстве). Сложные формы поведения насекомых. Организация сообществ насекомых. Сенсорные основы управления поведением насекомых: принципы и подходы.

Половая система и размножение. Строение половой системы самца и самки. Сперматогенез. Типы яйцевых трубок, оогенез и вителлогенез. Формирование яйцевых оболочек. Строение хориона. Способы оплодотворения и общее направление эволюции оплодотворения наземных членистоногих, в том числе насекомых. Способы размножения насекомых: половое, бесполое (партеногенез и педогенез) и живорождение. Регуляция пола при партеногенезе. Откладка яиц и гонотрофические циклы кровососущих насекомых. Плодовитость, генераций, смена поколений. Экологическая и физиологическая регуляция размножения. Эмбриональное развитие, метаморфоз. Строение яйцеклетки. Дробление, рост и развитие зародыша, сегментация и образование конечностей, зародышевые листки, детерминация тканей, зародышевые оболочки. Вылупление из яйца. Постэмбриональное развитие, линьки, стадия и возраст. Типы метаморфоза насекомых. Полиморфизм насекомых (половой, кастовый. экологический, сезонный). Гормональная регуляция метаморфоза и диапаузы. Эндокринные органы насекомых: нейросекреторные клетки, проторакальные железы, прилежащие тела. Нейрогормоны, экдизон, ювенильный гормон; их роль в управлении жизнедеятельностью насекомых. Диапауза и ее приуроченность к стадиям развития насекомых. Адаптивное значение диапаузы. Принципы зоологической систематики. Представления о виде, внутривидовые и надвидовые категории. Задачи и методы систематики. Система современных насекомых, родственные отношения основных отрядов. Вклад отечественных энтомологов в фаунистику и систематику насекомых. Значение систематики для прикладной энтомологии. Зоологическая номенклатура. Международный кодекс зоологической

Принцип биноминальной номенклатуры. Закон приоритета. Основные категории типовых экземпляров (голотип, лектотип, неотип, синтип). Обзор современных систем класса насекомых. Его состав. Основные признаки насекомых с неполным и полным превращением. Общая характеристика основных отрядов первичнобескрылых насекомых (Protura, Diplura, Collembola, Thysanura). Особенности организации стрекоз и поденок и их положение в системе крылатых насекомых. Их биологические особенности. термиты, ИΧ морфологические И биологические богомолы. Общественный образ жизни у термитов. Прямокрылые насекомые, их классификация и важнейшие семейства. Особенности развития саранчовых, их экологии и расселения. Значение защитных мероприятий в борьбе с саранчовыми при вспышках массовых размножений. Равнокрылые и полужесткокрылые классификация, характеристика насекомые, подотрядов, ИΧ направления эволюции и практическое значение. Тли и их роль в экосистемах. морфологические Жесткокрылые, биологические И ИΧ черты. Практическое значение жесткокрылых, важнейшие семейства. качестве вредителей травянистой и древесной растительности И энтомофагов. Чешуекрылые, их морфологические черты, биология. Важнейшие семейства и практическое значение. Двукрылые, их морфологические черты, биология, особенности метаморфоза и система отряда. Важнейшие семейства и их практическое значение. Перепончатокрылые. Подотряды И семейства. Основные черты биологии и общественной организации муравьев и пчелиных. Паразитизм и вторичный паразитизм. Основные понятия экологии. Среда и факторы среды. Принцип смены стаций. Адаптация насекомых к экстремальным экологическим условиям. Холодостойкость насекомых, механизмы защиты от высыхания.

Циркадные ритмы и биологические часы. Круг контролируемых явлений. Значение исследований механизмов циркадных ритмов для практики народного хозяйства. Питание. Пища как экологический фактор. Влияние состава пищи на рост, развитие и размножение насекомых. Пищевые режимы и пищевая специализация. Консортивные связи насекомых и растений. Диапауза насекомых, ее признаки, формы проявления и адаптивное значение. Обмен веществ при диапаузе. Приуроченность диапаузы к стадиям развития и разнообразие ее проявлений. Роль диапаузы в синхронизации жизненного цикла с сезонными изменениями климатических факторов и с неблагоприятными факторами среды. численности насекомых, ее теоретические и прикладные аспекты. Факторы, модифицирующие и регулирующие численность насекомых (климат, трофика, плотность популяций. биоценотические отношения в экосистеме). Условия равновесия в системах «хозяин – паразит» и «хищник – жертва». Вспышки массового размножения насекомых, их периодичность и факторы, определяющие ход вспышек. Роль насекомых в круговороте веществ. Значение насекомых в мониторинге за состоянием окружающей среды. Географическое распространение насекомых и его основные закономерности. Зоогеографические царства и области Земли и районирование Палеарктики. Расселение и типы ареалов у современных видов. Исторические и эколого-климатические аспекты формирования их границ. Характеристика энтомофауны разных географических регионов. Особенности фауны насекомых России. Антропогенные факторы и их значение для расселения насекомых. Происхождение насекомых. Наземные членистоногие, их происхождение и эволюция. Положение насекомых в системе членистоногих. Современные представления о происхождении насекомых по данным сравнительной морфологии и палеонтологии. Сельскохозяйственная энтомология. Насекомые — вредители растений, их состав, основные типы

повреждений, экологические группы насекомых-фитофагов. Главные вредители сельскохозяйственных культур в России и сопредельных странах. Карантинные Лесная энтомология и ее основные направления. Основные группы фито- и ксилофагов и специфика их воздействия на лесные экосистемы. Причины вспышек массового размножения. Современные методы слежения за состоянием лесных экосистем. Медицинская и ветеринарная энтомология. Насекомыепаразиты человека животных, их состав и основные представители. Экологические группировки паразитов. Облигатные и факультативные паразиты. Насекомые как переносчики болезней. Природные очаги инфекций Способы переноса возбудителей. Роль Е.Н. Павловского в разработке учения о природной очаговости трансмиссивных заболеваний. Значение работ В.Н. Беклемишева в разработке системы противомалярийных мероприятий. Эпидемиологическое значение основных групп переносчиков: комаров, москитов, мошек, мокрецов, слепней, высших двукрылых, блох и вшей. Значение системы санитарногигиенического контроля в предотвращении эпидемий. Вредители технического музейных экспонатов. Их запасов продуктов, состав, основные представители, особенности экологии. Специфика методов защиты вредителей. Важнейшие методы борьбы с вредными насекомыми: карантинные мероприятия, агротехнические методы, внедрение **УСТОЙЧИВЫХ** Биологические методы, их основные направления и перспективы: охрана полезных энтомофагов, их массовое разведение и интродукция. Химические методы, их достоинства и недостатки. Устойчивость насекомых к инсектицидам, отрицательное воздействие инсектицидов на окружающую среду. Новые методы растений (стерилизация, генетические методы, репелленты аттрактанты). Полезные насекомые. Медоносная пчела, шелковичный червь, их биология и сферы использования производимых ими продуктов. Насекомыеопылители, методы их охраны и повышения эффективности их деятельности. Эстетическое значение насекомых. Охрана редких и исчезающих видов. Красные книги разного уровня и их значение. Основные виды насекомых, занесенные в Красные книги различного уровня. Техническая энтомология. Создание и воспроизводство культур насекомых. Массовое разведение насекомых для жизнедеятельности продуктов ИХ И выпуска посевы сельскохозяйственных культур и культуры в условиях защищенного грунта.

Вопросы к экзамену

- 1. Энтомология как наука: предмет энтомологии, роль насекомых в природе и их значение для человека.
- 2. История энтомологии, основные достижения мировой и отечественной энтомологии.
- 3. Строение тела насекомых. Подразделение тела на отделы и сегменты.
- 4. Покровы насекомых и их функции. Строение и химический состав кутикулы. Роль кутикулы в качестве физического и физиологического барьеров. Структура, пигментная окраска, кутикулярные выросты и волоски, структурная и покровов.
- 5. Основные типы ротовых аппаратов (грызущий, лижуще-сосущий, колюще-сосущий). Приспособления к приему жидкой пищи в разных экологических группах. Антенны, основные и специализированные типы антенн.
- 6. Грудные сегменты и конечности. Строение грудного отдела. Основные мышцы груди. 7. Особенности строения грудного отдела у представителей разных отрядов насекомых.
- 8. Функциональные типы конечностей и их специализация в связи с образом жизни.
- 9. Крыло, его строение и происхождение. Сочленение крыла с телом. Работа летательной мускулатуры.

- 10. Пищеварительный аппарат. Строение пищеварительной системы. Морфологические, гистологические и ультраструктурные особенности передней, средней и задней кишки.
- 11. Дыхание. Трахейное дыхание наземных членистоногих. Особенности дыхательной системы насекомых. Строение трахейной системы.
- 12. Кровеносная система насекомых. Специфика кровеносной системы, строение и иннервация сердца. Циркуляция крови. Состав и функция гемолимфы. Перикардиальные клетки.
- 13. Выделительная системы. Строение и функция мальпигиевых сосудов, лабиальные железы. Нефроциты и другие органы накопления. Гормональная регуляция экскреции. Жировое тело, его строение и назначение. Жировое тело как источник метаболической воды.
- 14. Нервная система. Общий план строения и основные подразделения. Функции головных, грудных и брюшных ганглиев. Организация периферической и симпатической нервной систем.
- 15. Строение органов зрения насекомых (сложные и простые глаза, дорсальные и латеральные глазки). Образование изображения в фасеточных глазах. Цветовое зрение.
- 16. Инстинкты и рефлексы насекомых. Ориентация во времени и пространстве. Сигнализация у насекомых. Звуковая и химическая коммуникация. Сенсорные основы управления поведением насекомых: принципы и подходы.
- 17. Пресоциальный уровень организации насекомых (агрегация, забота о потомстве). Сложные формы поведения насекомых. Организация сообществ насекомых.
- 18. Половая система и размножение. Строение половой системы самца и самки.
- 19. Эмбриональное развитие, метаморфоз.
- 20. Типы метаморфоза насекомых. Полиморфизм насекомых (половой, кастовый, экологический, сезонный).
- 21. Гормональная регуляция метаморфоза и диапаузы. Эндокринные органы насекомых: нейросекреторные клетки, проторакальные железы, прилежащие тела. Нейрогормоны, экдизон, ювенильный гормон; их роль в управлении жизнедеятельностью насекомых.
- 22. Принципы зоологической систематики. Система современных насекомых, родственные отношения основных отрядов. Значение систематики для прикладной энтомологии.

Литература

Захватин Ю.А. Курс общей энтомологии / Ю.А.Захватин. – М.: Колос, 2001. – 376 с.

Догель В.А. Зоология беспозвоночных/В.А. Догель.- М.:Альянс, 2009.-605с.

Коробкин В.И. Экология : учеб. для вузов / В.И. Коробкин, Л.В. Передельский. – Изд. 16-е, перераб. и доп. – Ростов-на-Дону : Феникс, 2010. – 602 с.

Николайкин Н.И. Экология : учеб. для вузов / Н.И. Николайкин, Н.Е. Николайкина, О.П. Мелехова. – Изд. 7-е. – М. : Дрофа, 2009. – 622 с.

Пономарева И.Н. Общая экология : учеб. пособие / И.Н. Пономарева, В.П. Соломин, О.А. Корнилова. – Ростов-на-Дону : Феникс, 2009. – 538 с.

Профиль (специальность) Генетика 03.02.07

Закономерности наследования признаков, установленные Г. Менделем. Правило «чистоты гамет». Генотип как система взаимодействующих генов. Типы взаимодействия аллельных и неаллельных генов, их молекулярные механизмы. Основные положения хромосомной теории наследственности Т. Моргана.

Принципы построения генетических карт хромосом. Генетика пола. Прогамное. сингамное и эпигамное определение пола. Хромосомный механизм определения пола на примере человека и птиц. Механизм определения пола у ос и пчел. Нехромосомная наследственность. Плазмон и плазмогены. Наследственные болезни человека, связанные с мутациями плазмогенов. Модификационная изменчивость. Норма реакции. Адаптивные модификации и морфозы. Генокопии и фенокопии. Типы наследственной изменчивости (рекомбинационная изменчивость и ее источники, мутационная изменчивость). Эпигенетическая изменчивость. Характеристика генных и хромосомных мутаций. Типы геномных мутаций. Авто- и аллополиплоиды, их значение и использование в селекции. Доказательство роли ДНК как материального носителя наследственности. Структура ДНК. Свойства ДНК как субстрата наследственного материала. Репликация ДНК у прокариот и эукариот. Репликация теломерных участков хромосом эукариот. Современная теория гена. Типы генов. Мозаичное строение генов у эукариот. Альтернативный сплайсинг. Матричная активность генов. Транскрипция у прокариот и эукариот. Особенности транскрипции разных типов РНК у эукариот. Процессинг, сплайсинг. Генетический код и его свойства. Использование знаний о генетическом коде для объяснения эффекта мутаций (нонсенс-мутации, сеймсенс-мутации, сдвиг рамки считывания). Экспансия числа тринуклеотидных повторов и антиципация. Трансляция. Роль рибосом и разных типов РНК в этом процессе. Основные этапы трансляции. Способы репарации повреждений ДНК. Наследственные болезни человека, связанные с нарушением систем репарации. Интерференция РНК – регуляция экспрессии генов на РНК посттранскрипционном уровне. Использование интерференции генетических исследованиях и биомедицине. Генетическая инженерия клеточном, хромосомном и генном уровнях. Генная инженерия. Основные этапы создания трансгенных организмов. Понятие о векторе: типы векторов, их конструирование и способы переноса в клетки различных организмов. Достижения перспективы генной инженерии. Картирование генома: цитологические, генетические и физические карты хромосом, принципы их построения. маркеры ДНК. ПДРФ-маркеры. Молекулярные Микроминисателлиты. И Фингерпринтинг как метод идентификации личности. Полимеразная цепная реакция как способ амплификации любого фрагмента ДНК. Принципы ПЦР, области применения. Понятие о геномике и протеомике. «Обратная» генетика. Ортологичные и паралогичные гены. Биочипы – новый подход для изучения состояния всех генов организма. Селекция как наука. Вклад акад. Н.И. Вавилова в развитие генетических основ селекции. Методы селекции. Понятие о сорте. Гетерозис и его роль в селекции. Инбридинг и аутбридинг. Механизмы репарации ДНК у микроорганизмов. Конъюгация – половой процесс у бактерий. F-плазмиды и Hfr-клетки. Генетическое картирование методом конъюгации. Система рестрикции-модификации, предохраняющая ДНК клеткихозяина от включения в ее генетический материал чужеродных молекул ДНК. Ферменты рестрикции (рестриктазы) и модификации (метилазы). Метилирование ДНК. Антирестрикция. Мейотический кроссинговер, его генетические последствия. Генетические карты хромосом и принципы их построения. Определение расстояния между генами по частоте кроссинговера. Митотический кроссинговер, его генетические последствия, использование для генетического картирования. Цитоплазматическое наследование. Типы митохондриальных мутаций. Petite мутанты и наследование способности дыхания у дрожжей. Подходы к изучению функций генов: позиционное клонирование, нокаут генов путем интерференции РНК, гомологичной рекомбинации. Биочипы (ДНК-поля)- принципы и возможности использования. Транскриптомика. Особенности структурной организации геномов

про- и эукариотических микроорганизмов, выявленные на основании их полного секвенирования. Представление о минимальном размере генома одноклеточных микроорганизмов. Клеточный (митотический) цикл и его регуляция. Циклины и циклин зависимые киназы, их роль в регуляции клеточного деления. Митоз (кариокинез) и его биологическое значение. Нарисовать схему митоза. Мейоз и его биологическое значение. Нарисовать схему мейоза. Профаза мейоза. Кроссинговер, его биологическое значение. Митоз и мейоз, их сходства и отличия. Типы мейоза. Типы РНК. Структура, функции. ДНК. Правила Чаргаффа. Модель Уотсона-Крика. Полуконсервативный механизм репликации ДНК. Рагменты. Оказаки. РНК-затравки, роль праймазы. ДНК-лигазы. Хеликазы. ДНК-гиразы. ДНКсвязывающие белки. Основные этапы репликации. Исправление ошибок ДНКполимеразами. Активация аминокилот. Инициирующие аминокислоты. Рибосомы – молекулярные машины, осуществляющие синтез белка. Инициация синтеза белка. Элонгация синтеза полипептидной цепи. Терминация синтеза полипептида. Центральная молекулярной биологии. Полирибосомы. догма трансляции. Учение Ч. Дарвина об транскрипции изменчивости И наследственности. Формы и причины изменчивости. Особенности генома у прокариот. Петлевая или доменная организация ДНК у бактерий. Разные модели нуклеоида бактериальной клетки. «Скользящие организации бактериальной хромосомы. Ассоциация ДНК с белками в бактериальном нуклеоиде. Особенности репликации ДНК вирусов и прокариот. Организация Многокомпонентная генома эукариот. организация ядра эукариот. особенности, Функциональные отличающие ядра эукариот ядерных компонентов прокариот. Количество ДНК в геноме у про- и эукариот. Мозаичная (интрон-экзонная) Микросателлиты структура генов эукариот. минисателлиты (MHC) как разновидности satДНК, ИХ организация И распространение в геноме эукариот. Локусы варьирующего числа тандемных повторов (VNTR-локусы). Генная дактилоскопия. Хромосомы высших эукариот. Три типа хромосом по Навашину. Дайте характеристику понятию «хромосома» в свете современных представлений. Формы организации хромосом: интерфазная и митотическая. Охарактеризуйте структурно-функциональное состояние хромосом. Общий план строения хромосом эукариотических организмов. Строение и функции центромеры и кинетохора. Типы хромосом в зависимости расположения центромеры или первичной перетяжки. Понятие «кариотип» и «идиограмма». Понятие «кариотип» по Левитскому. Диплоидный (2п) и гаплоидный (п) наборы хромосом. Размеры хромосом у разных организмов. «Критическая масса хромосом». Аутосомы и половые хромосомы. Хроматин, его организация и локализация в клетке. Фракции хроматина, их молекулярная и генетическая организация и отличительные особенности. Типы гетерохроматина, особенности их организации. Участки локализации на хромосоме.

Литература

- 1.Воронцов Н.Н. Развитие эволюционных идей в биологии / Н.Н. Воронцов. М.: Изд. Отдел УНЦДО МГУ, Прогресс-Традиция, АБФ, 2004. 432 с.
- 2. Генетика / под ред. В.И. Иванова. М.: ИКЦ Академкнига, 2006. 638 с.
- 3.Гужов ЮЛ. Селекция и сееноводство культивируемых растений: Учебник для студ. Агроном. Специальностей с.-х. вузов и биол. Специальностей университетов / Ю.Л. Гужов, А.Фукс, П. Валичек; Под ред. Ю.Л. Гужова. 3-е изд., перераб. И доп. М.: Мир, 2003. 536 с.
- 4.Машкина О.С. Генетическая инженерия и биобезопасности. Учебное пособие по курсу «Генетика с основами селекции» / О.С. Машкина, А.К. Буторина. Воронеж : Воронеж. Гос. Ун-т, 2005. 71с.

- 5. Альбертс Б. Молекулярная биология клетки / Б. Альбертс [и др.]. Т.3. М.: Мир, 1986.
- 6.Жимулев И.Ф. Общая и молекулярная генетика / И.Ф. Жимулев. Новосибирск: Изд-во СО РАН, 2007. 479с.
- 7. Инге-Вечтомов С.Г. Генетика с основами селекции / С.Г. Инге-Вечтомов. СПб : Изд-во Н-Л, 2010. 720с.

Профиль (специальность) Почвоведение 03.02.13

Понятие о почве как самостоятельном естественно-историческом теле. Место и роль почвы в биосфере. Структура почвоведения и его место в системе наук.

Минеральная часть почв. Минералы, слагающие твердую фазу почв. Первичные минералы, их основные группы. Основные группы вторичных минералов: соли, оксиды, аллофаны, глинистые минералы. Свойства почв, определяемые вторичными минералами: ионообменная способность, липкость, пластичность.

Органическое вещество почв. Источники почвенного гумуса. Понятие о минерализации и гумификации. Влияние внешних условий на процессы трансформации органического вещества. Специфические и неспецифические соединения. Основные группы гумусовых веществ: гуминовые кислоты, фульвокислоты, гумин, их особенности и роль в почвообразовании.

Вода в почве. Почвенный раствор и факторы, определяющие его состав. Состав почвенного раствора, его кислотность и щелочность. Роль почвенного раствора в жизни растений.

Почвенный воздух. Формы почвенного воздуха. Воздушно-физические свойства почв.

Поглотительная способность почв. Виды поглотительной способности почв. Почвенный поглощающий комплекс. Кислотность и щелочность почв.

Актуальная и потенциальная почвенная кислотность. Обменная и гидролитическая кислотность. Щелочность почв. Буферность почв.

Окислительно-восстановительные процессы в почвах.

Основные теплофизические характеристики почв. Теплообмен в почве. Температурный режим и его влияние на почвообразование и плодородие почв.

Радиоактивность почв.

Гранулометрический состав почв, его влияние на почвообразование и свойства почв. Состав и свойства гранулометрических элементов. Их классификация поразмеру. Классификация почв по гранулометрическому составу.

Структура почв. Факторы агрегирования почвенной массы. Систематика почвенной структуры и ее диагностическое значение.

Понятие о почвенных горизонтах. Образование почвенных горизонтов, их отличие от литологических слоев. Систематика почвенных горизонтов.

Диагностика почвенных горизонтов.

Понятие о почвенном профиле. Систематика почвенных профилей по характеру соотношения генетических горизонтов. Типы строения почвенного профиля.

Общая схема почвообразования. Стадийность почвообразования.

Баланс вещества в почвообразовании. Противоположные явления при почвообразовании. Элементарные почвенные процессы (ЭПП). Комплект и комплекс ЭПП. Тип почвообразования. Особенности почвообразования в различных экологических условиях.

Режимы почвообразования. Водный режим почв. Воздушный режим почв. Тепловой режим почв.

Плодородие почв. Понятие о почвенном плодородии. Категории почвенного плодородия. Факторы плодородия почв.

Факторы почвообразования. В.В. Докучаев и учение о факторах почвообразования. Взаимосвязь и взаимообусловленность факторов почвообразования. Деятельность человека как фактор почвообразования.

Систематика почв. Понятие о систематике почв. Разделы систематики почв.

Таксономия, номенклатура и диагностика почв. Принципы диагностики почв: профильный метод, комплексный подход, сравнительно-географический анализ, оценка режимов почвообразования. Диагностические признаки почв. Концепция диагностических горизонтов почв.

Главнейшие типы почв. Слаборазвитые почвы.

Дерновые почвы. Формирование дерновых почв на карбонатных и бескарбонатных плотных породах. Дерново-карбонатные почвы. Дерновые кислые почвы. Дерновые почвы на рыхлых породах.

Гидроморфные почвы. Общие признаки и свойства гидроморфных почв. Оглеение почв. Глей, его виды и проявление в разных почвах. Псевдоглей. Глеевые и глееватые почвы.

Болотные почвы. Распространение болотных почв в разных природных зонах. Происхождение болот и их типы. Торфообразование и торфонакопление в разных типах болот. Типы и подтипы болотных почв, их диагностика, свойства.

Аллювиальные почвы. Особенности почвообразования поймах: гидрологический режим, отложение аллювия В разных частях поймы. Особенности дельтового почвообразования. Типы и подтипы аллювиальных почв. диагностика. генезис. свойства. особенности сельскохозяйственного использования.

Подзолистые почвы. Распространение, условия почвообразования, водный и тепловой режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства. Подзолообразование, история его изучения, современные взгляды. Тропические и субтропические подзолистые почвы. Оподзоленность почв других типов. Особенности сельскохозяйственного и лесохозяйственного использования подзолистых почв.

Бурые лесные почвы (буроземы). Распространение, условия почвообразования, водный и тепловой режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства, генезис, особенности сельскохозяйственного и лесохозяйственного использования.

Серые лесные почвы. Распространение, условия почвообразования, водный и тепловой режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства, генезис, особенности сельскохозяйственного использования. Серые лесные глеевые почвы.

Черноземы. Распространение, условия почвообразования, водный и тепловой режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства, генезис, особенности сельскохозяйственного использования.

Лугово-черноземные почвы. Лугово-черноземовидные почвы. Луговые темные черноземовидные почвы. Брюниземы. Черноземовидные почвы в тропиках и субтропиках.

Солончаки. Происхождение и аккумуляция солей в почвах. Распространение и провинции соленакопления. Засоление почв. Систематика, диагностика, свойства, генезис солончаков.

Солонцы. Распространение, условия почвообразования, систематика, диагностика, свойства, генезис, использование и мелиорация. Солонцы автоморфные, полугидроморфные и гидроморфные.

Солоди. Распространение, условия почвообразование, систематика, диагностика, свойства, генезис, использование и мелиорация. Осолоделые почвы.

Каштановые почвы. Распространение, условия почвообразования, тепловой и водный режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства, генезис, особенности сельскохозяйственного использования. Лугово-каштановые почвы.

Бурые полупустынные почвы. Распространение, условия почвообразования, тепловой и водный режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства, генезис, особенности сельскохозяйственного использования.

Сероземы. Распространение, условия почвообразования, тепловой и водный режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства, генезис, особенности сельскохозяйственного использования.

Коричневые почвы. Распространение, условия почвообразования, тепловой и водный режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства, генезис, особенности сельскохозяйственного использования.

Желтоземы. Распространение, условия почвообразования, тепловой и водный режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства, генезис, особенности сельскохозяйственного использования.

Красноземы. Распространение, условия почвообразования, тепловой и водный режимы, особенности биологического круговорота веществ, систематика, диагностика, свойства, генезис, особенности сельскохозяйственного использования.

Горные почвы. Особенности почвообразования в горных ландшафтах и их изменение с высотой. Высотная поясность почв в разных горных системах и разных природных зонах. Особенности строения, состава и свойств горных почв. Особенности сельскохозяйственного использования горных почв.

Примерные вопросы к экзамену:

- 1.Место и роль почвы в биосфере.
- 2.Минералы, слагающие твердую фазу почв. Первичные минералы, их основные группы.
- 3.Основные группы вторичных минералов: соли, оксиды, аллофаны, глинистые минералы.
- 4.Органическое вещество почв. Источники почвенного гумуса. Понятие о минерализации и гумификации.
- 5.Влияние внешних условий на процессы трансформации органического вешества.
- 6.Почвенный раствор и факторы, определяющие его состав. Состав почвенного раствора, его кислотность и щелочность.
- 7.Поглотительная способность почв. Виды поглотительной способности почв. Почвенный поглошающий комплекс.
- 8. Актуальная и потенциальная почвенная кислотность. Обменная и гидролитическая кислотность. Щелочность почв. Буферность почв.
- 9.Гранулометрический состав почв, его влияние на почвообразование и свойства почв.
- 10.Структура почв. Факторы агрегирования почвенной массы. Систематика почвенной структуры и ее диагностическое значение.
- 11.Понятие о почвенных горизонтах. Образование почвенных горизонтов, их отличие от литологических слоев. Систематика почвенных горизонтов.

- 12. Понятие о почвенном профиле. Типы строения почвенного профиля.
- 13. Общая схема почвообразования. Стадийность почвообразования.
- 14. Режимы почвообразования. Водный режим почв. Воздушный режим почв. Тепловой режим почв.
- 15.Плодородие почв. Понятие о почвенном плодородии. Категории почвенного плодородия. Факторы плодородия почв.
- 16.Факторы почвообразования. В.В. Докучаев и учение о факторах почвообразования.
 - 17Систематика почв. Понятие о систематике почв. Разделы систематики почв.
 - 18. Главнейшие типы почв. Слаборазвитые почвы.
 - 19.Дерновые почвы.
 - 20. Гидроморфные почвы. Болотные почвы.
 - 21.Аллювиальные почвы.
 - 22. Подзолистые почвы.
 - 23. Бурые лесные почвы (буроземы).
 - 24.Серые лесные почвы.
 - 25. Черноземы.
 - 26.Солончаки, солонцы, солоди
 - 27. Каштановые почвы.
 - 27. Бурые полупустынные почвы.
 - 28.Сероземы.
 - 29. Коричневые почвы.
 - 30.Желтоземы и красноземы.

Литература:

- 1.Муха В.Д. Агропочвоведение / В.Д. Муха, Н.И. Картамышев, Д.В. Муха. М. : Колос, 2004. 526 с.
- 2. Вальков В.Ф. Почвоведение / В.Ф. Вальков, К.Ш. Казиев, С.И. колесников. Ростов-на-Дону: ИКЦ «Март», 2004.- 496 с.
- 3. Почвоведение / Под ред. В.А.Ковды и Б.Г.Розанова. В 2-х томах. М.: Высшая школа. 1988.
- 4. Розанов Б.Г.: Морфология почв / .Б.Г. Розанов. М.: МГУ, 1983.
- 5. Классификация и диагностика почв СССР. М., Колос, 1977.
- 6. Классификация почв России. М., 2004.

Профиль (специальность)Экология 03.02.08

Экология как наука, познающая живой облик биосферы Введение термина "экология" Эрнстом Геккелем в 1866 г. для обозначения науки о взаимодействиях организма и среды. Развитие экологии в 20-м столетии. Уровни организации живой материи, изучаемые экологией (организм, популяция, сообщество, экосистема, биосфера). Две группы задач и соответствующие им подходы в современной экологии. (1) Изучение механизмов, определяющих распространение и обилие организмов (популяционный подход). (2) Изучение протекающих с участием организмов процессов трансформации вещества и энергии в экосистемах и биосфере (экосистемный подход). Возможности и ограничения каждого из подходов. Роль теоретических моделей (гипотез), экспериментов и полевых наблюдений.

Организм как дискретная самовоспроизводящаяся структура, связанная обменом веществ с окружающей средой. Два типа экологических факторов: условия и ресурсы. Диапазон условий (температуры, влажности, солевого состава и др.), в пределах которого возможно существование и размножение организмов.

Кривая толерантности. Взаимодействие факторов. Переживание неблагоприятных условий в покоящемся состоянии.

Обменные процессы, связывающие организмы со средой. Биогенные элементы. Зависимость организмов от разных источников энергии (фототрофы и хемотрофы) и разных источников углерода (автотрофы и гетеротрофы). Первичная продукция - чистая и валовая. Дыхание растений. Заменимые и незаменимые ресурсы. Лимитирующая концентрация необходимого ресурса. "Закон Ю.Либиха". Гетеротрофы. Поступление энергии с пищей и её дальнейшая трансформация. Рацион, ассимиляция, траты на обмен, рост и размножение. Потребление кислорода как показатель скорости обмена. Зависимость общего обмена и его интенсивности от массы тела. Влияние температуры на организмы. Эктотермы и эндотермы. Зависимость интенсивности обмена и скорости развития от температуры. Правило "суммы температур".

Жизненные циклы. Полициклические (размножающиеся многократно) и моноциклические (размножающиеся однократно) организмы. Конкуренция за ресурсы между разными функциями. Представление о *r*- и *K*-отборе.

Определение популяции в экологии и генетике. Генетическая неоднородность популяции. Иерархическая структура популяций. Локальные популяции и метапопуляции.

Статические характеристики популяции: общая численность, плотность, структура (размерная, возрастная, половая). Связь между размерами организмов и плотностью популяции. Популяция в пространстве: случайное, агрегированное (пятнистое) и регулярное размещение особей. Территориальное поведение. Соотношение затрат на охрану территории и получаемых при этом выгод.

Динамические характеристики популяции: скорость роста численности, рождаемость, смертность, интенсивность иммиграции и эмиграции. Динамика популяции как баланс протекающих в ней процессов. Распределение смертности по возрастам. Когортные (динамические) и статические таблицы выживания (дожития): способы их построения. Расчет ожидаемой продолжительности дальнейшей жизни для разных возрастов. Основные типы кривых выживания организмов. Демографические таблицы, учитывающие интенсивность размножения. Определение коэффициента воспроизводства R_0 . Время генерации и способы его оценки.

Экспоненциальный рост популяции. Скорость экспоненциального роста: её зависимость от характеристик организма (размера и др.), обеспеченности ресурсами и условий среды. Стабильное возрастное распределение. Расчет скорости экспоненциального роста по демографическим таблицам. Репродуктивная структура популяции. Разные типы возрастной структуры популяций и их связь с динамикой численности. Динамика биомассы популяции.

Рост народонаселения во всем мире и в отдельных регионах. Изменение кривой выживания по мере экономического развития и улучшения здравоохранения. Детская смертность. Различия в возрастной структуре и скорости роста популяций развитых и развивающихся стран.

Проблема динамики численности популяций. Логистическая модель регуляции роста численности: предпосылки и следствия. Эффект запаздывания и автоколебания численности. Воспроизведение автоколебательного режима в лабораторных экспериментах. Факторы зависимые и независимые от плотности. Минимальный размер популяции, необходимый для её благополучного существования. Проблема охраны редких и исчезающих видов. Красные книги.

Разнообразие типов динамики популяций. Циклические колебания численности грызунов, зайцеобразных и хищных. Смена механизмов регуляции в зависимости от достигнутого уровня численности. Преобладающий способ

регуляции численности и положение организмов в цепях питания. Видывредители и их происхождение. Ограничение численности видов-вредителей: истребительные и регулирующие меры. Пестициды. Последствия применения хлорорганических пестицидов: накопление в высших звеньях трофической цепи. Современные требования к пестицидам. Поддержание численности видоввредителей на экономически оправданном уровне. Использование естественных врагов для контролирования видов-вредителей.

Разные типы взаимодействий популяций и способы их выявления.

Отношения "ресурс - потребитель" (хищник - жертва). Функциональная реакция потребителя на увеличение количества ресурса (числа жертв). Численная реакция потребителя на возрастание количества ресурса. "Пороговая концентрация" ресурса - минимальное содержание ресурса, допускающее поддержание стационарной (постоянной) численности. Изоклина "нулевого прироста" популяции в пространстве двух ресурсов (взаимозаменимых и незаменимых).

Колебания "хищник - жертва". Модель Лотки - Вольтерры. Попытки создания экспериментальных систем "хищник - жертва". Роль миграции хищника и жертвы в поддержании их сосуществования. Взаимоотношения "хищник - жертва" в природе. Коэволюция хищника и жертвы. "Цена" защиты от хищников. Пищедобывательное поведение хищников (потребителей). Паразитизм.

Конкуренция. Соотношение внутривидовой и межвидовой конкуренции. Теоретический подход к изучению конкуренции. Модель Вольтерры - Лотки - Гаузе и ее ограничения. Принцип конкурентного исключения (закон Гаузе) и его современная трактовка. Связь между числом устойчиво сосуществующих видов и числом плотностно-зависимых факторов. Сосуществование конкурирующих видов. Степень допустимого перекрывания экологических ниш.

Мутуализм. Примеры мутуализма среди животных, а также животных с растениями. Опылители. Микориза - мутуализм высших растений и грибов. Лишайники.

Определение сообщества. Различные подходы к выделению и описанию сообществ. Структура сообществ. Видовое разнообразие как интегральная характеристика сообщества. Индексы видового разнообразия, их зависимость от числа видов и соотношения их численностей. Роль конкуренции и хищничества в формировании и поддержании структуры сообществ. Островные сообщества: соотношение случайности заселения и биотических взаимодействий в формировании видового состава. Расхождение экологических ниш в сообществе. Основные типы эколого-ценотических стратегий по Л.Г.Раменскому и Ф.Грайму: виоленты (компетиторы), патиенты (стресс-толеранты) и эксплеренты (рудералы).

Динамика сообществ во времени. Первичные и вторичные сукцессии. Климаксные сообщества. Изменения видового разнообразия в ходе сукцессии. Связь между продуктивностью и разнообразием. Устойчивость сообществ. Локальная и общая устойчивость. Нарушение структуры сообществ под влиянием антропогенных воздействий. Разработка мер по охране биоразнообразия. Экосистема как функциональная и структурная единица биосферы. Круговорот биогенных элементов. Трудности определения границ экосистемы: несовпадение масштабов пространственно-временных круговоротов разных Ограниченное число биогеохимических функций. Возможность интегральной оценки физиологической активности больших групп организмов. Основные функциональные группы организмов в экосистеме. Продуценты, консументы и редуценты. Условность границы между консументами и редуцентами. Биотрофы и сапротрофы. Биомасса и продукция. Лимитирование первичной продукции различными (освещенностью, факторами температурой, влажностью,

концентрацией биогенных элементов). Утилизация первичной продукции в трофических цепях. Пастбищная и детритная пищевые цепи. Трофическая сеть и трофические уровни. Пирамида продукций. Регуляция отдельных уровней "снизу" и "сверху". Типы экосистем.

Учение о биосфере. Роль В.И.Вернадского. Структура и материальный состав биосферы. Функции биосферы. Эволюция биосферы. Экология как наука. Предмет, понятия, становление как науки. Методы. Экологическое моделирование.

Примерные вопросы к экзамену:

- 1. Понятие о мониторинге, его типы. Биологический мониторинг, его формы.
- 2. Понятие о биоаккумуляции. Биоумножение, биоконцентрирование. Экологическое обогащение.
- 3.Понятие об экологическом факторе. Классификация их. Интенсивность действия факторов. Оптимум, минимум, максимум. Экологическая валентность.
- 4.Закон Либиха. Лимитирующие(ограничивающие) факторы. Закон толерантности Шелфорда.
- 5.Свет как закономерно-периодический фактор. Фотопериод, его значение.

Короткодневные и длиннодневные формы животных и растений.

- 6.УФ-излучение, неоднозначность его действия. Люминесценция, ее виды, механизмы действия. Био- и хемилюминесценция. Типы и механизм действия.
- 7. Термальный фактор. Термальные стрессы. Группы животных, обладающих и не обладающих теплокровностью.
- 8. Понятие о теплоотдаче и теплопродукции. Терморегуляция теплокровных (физические,
- физиологические и биохимические механизмы).
- 9. Влажность как экологический фактор. Адаптивные группы растений к фактору влажности. Адаптации животных к фактору влажности.
- 10.Понятие об экологической нише.
- 11 Понятие о жизненной форме. Существующие классификации.
- 12. Популяция вида (определение, территориальная характеристика).
- 13.Возрастная и половая характеристики, типы брачных отношений как одно из направлений достижения репродуктивного успеха.
- 14. Рождаемость и смертность. Изменение численности популяции во времени. Кривые выживания. Логистическая кривая.
- 15.Понятие о конкуренции ее типы. Конкурентное исключение. Проблема динамики численности животных. Обзор теорий, объясняющих причины динамики численности животных (на примере насекомых). Модифицирующие и регулирующие факторы изменения численности организмов, модели их взаимодействия.
- 16. Этологическая структура популяции.
- 17. Генетическая структура популяций Представление о «популяционных волнах».
- 18. Синэкология. Предмет исследований этого раздела экологии. Понятие «биоценоз», его пространственно-временная характеристика. Видовое разнообразие как основа нормального функционирования биоценоза. Типы связей в биоценозе.
- 19.Понятия об экосистеме и биогеоценозе, их принципиальные характеристики. Функциональные составляющие экосистем. Поток энергии. Гомеостаз экосистем, его типы.
- 20. Циклические процессы в экосистеме. Сукцессии, их типы, механизмы реализации. Понятие о климаксных сообществах.
- 21. Понятие о продуктивности. Первичная и вторичная продуктивность. Пирамиды чисел, биомассы, энергии.
- 22. Биосфера, ее структура. Функции биосферы. Современная стратегия охраны природы.

Литература:

- 1.Лось В.А. Экология: учебник / В.А.Лось. М. : Экзамен. 2006.- 477 с.
- 2. Николайкин Н.И. Экология / Н.И. Николайкин, Н.Е Николайкина, О.П.Мелехова. 6 е издание, испр. М.: Дрофа. М.: Дрофа, 2008. 622. 624 с.
- 3. Чернова Н. М. Общая экология : учебник для студ. пед. вузов / Н. М. Чернова, А. М. Былова. М.: Дрофа, 2004.— 411с.
- 4. Корте Ф. Экологическая химия. Основы и концепции / Ф. Корте [и др.]. М. : Мир, 1997. 393с.
- 5.Бигон М. Экология. Особи, популяции и сообщества. Ecology. Individuals, populacions and communites / М.Бигон, Дж. Харпер, К. Таунсенд. М.: Мир, 1989. Т.1. 667 с.
- 6. Бигон М. Экология. Особи, популяции и сообщества. Ecology. Individuals, populations and communites / М. Бигон, Дж. Харпер, К. Таунсенд. М.: Мир, 1989. Т.2. 477 с.
- 7.Вернадский В. И. Биосфера : избр. тр. по биогеохимии / В. И. Вернадский.- М..: Мысль, 1967. 374 с.

Критерии оценки знаний претендентов на поступление в аспирантуру

Оценка	Критерии
Отлично	 Полно раскрыто содержание материала в объёме программы вступительного экзамена в аспирантуру. Чётко и правильно даны определения и раскрыто содержание материала.
	3. Ответ самостоятельный, при ответе использованы знания, приобретённые ранее.
	4. Сформированы навыки исследовательской деятельности.
Хорошо	1. Раскрыто основное содержание материала в объёме программы вступительного экзамена в аспирантуру.
	2. В основном правильно даны определения, понятия. 4. Материал изложен неполно, при ответе допущены неточности, нарушена последовательность изложения. Допущены небольшие неточности при
	выводах и использовании терминов. 5. Практические навыки нетвёрдые.
Удовлетворительно	 Усвоено основное содержание материала, но изложено фрагментарно, не всегда последовательно. Определения и понятия даны не чётко. Допущены ошибки при промежуточных математических выкладках в выводах. Практические навыки слабые.
Неудовлетворительно	 Основное содержание учебного материала не раскрыто. Не даны ответы на дополнительные вопросы преподавателя. Допущены грубые ошибки в определениях, доказательства теорем не проведено. Отсутствуют навыки исследовательской деятельности.

Программа вступительного испытания разработана:

Биофизика – проф., д.б.н., зав.кафедрой биофизики и биотехнологии Артюхов В.Г.

Биохимия - проф., д.б.н., зав.кафедрой биохимии и физиологии клетки Епринцев А.Т. проф., д.б.н., зав.кафедрой медицинской биохимии и микробиологии Т.Н.

Попова

Физиология и биохимия растений - проф., д.б.н., зав.кафедрой биохимии и физиологии клетки Епринцев А.Т.

Ботаника - проф., д.б.н., зав.кафедрой ботаники и микологии

Агафонов В.А.

Зоология - проф., д.б.н., зав.кафедрой зоологии и паразитологии Гапонов С.П.

Энтомология - проф., д.б.н., зав.кафедрой экологии и систематики беспозвоночных животных Негробов О.П.

Генетика - проф., д.б.н., зав.кафедрой генетики, цитологии и биоинженерии В.Н.

Попов

Почвоведение - проф., д.б.н., зав.кафедрой почвоведения и управления земельными ресурсами Щеглов Д.И.

Экология (биологические науки) - проф.,

д.б.н.

Хицова Л.Н.

Программа вступительного испытания одобрена решением Ученого совета биологопочвенного факультета (протокол № 2 от 17.03.2016 г.).